The mitochondria is under assault by very long chain fatty acids. Paradoxically, pronounced Androgenetic Alopecia is present although the patients may simultaneously show some degree of hypogonadism. Same story just a different villain attacking the mitochondria. Instead of dht it is in this case VLCFAs.
pmc.ncbi.nlm.nih.gov
These results indicate that VLCFA disturbs the mitochondrial membrane potential causing ROS accumulation, oxidative stress, and cell death. We further tested whether NAC (500 µM) can prevent the mitochondria-specific effects of VLCFA in C26:0-treated oligodendrocytes. Our results demonstrate that NAC improves mtGSH levels and mitochondrial function in oligodendrocytes, indicating that it has potential use in the treatment of ALD and related disorders.
This study shows the superiority of cysteine vs NAC for supplementing.
link.springer.com
The objective of the present study was to compare cysteine and N-acetyl-L-cysteine in respect to their transmembrane fluxes and find out which one is a better available precursor for the cells and thus better supports the intracellular glutathione synthesis.
Cysteine can directly participate in glutathione synthesis, whereas N-acetyl-L-cysteine must be first deacetylated before its incorporation to glutathione.
In the present study we investigated and compared the efficiencies of cysteine and N-acetyl-L-cysteine influx and efflux through the erythrocyte membrane. Erythrocytes transported both cysteine and N-acetyl-L-cysteine in a concentration-dependent manner. However, our results demonstrated that cysteine crosses the erythrocyte membranes more efficiently as compared to N-acetyl-L-cysteine.
N-Acetylcysteine Reverses the Mitochondrial Dysfunction Induced by Very Long-Chain Fatty Acids in Murine Oligodendrocyte Model of Adrenoleukodystrophy - PMC
The accumulation of saturated very long-chain fatty acids (VLCFA, ≥C22:0) due to peroxisomal impairment leads to oxidative stress and neurodegeneration in X-linked adrenoleukodystrophy (ALD). Among the neural supporting cells, myelin-producing ...

These results indicate that VLCFA disturbs the mitochondrial membrane potential causing ROS accumulation, oxidative stress, and cell death. We further tested whether NAC (500 µM) can prevent the mitochondria-specific effects of VLCFA in C26:0-treated oligodendrocytes. Our results demonstrate that NAC improves mtGSH levels and mitochondrial function in oligodendrocytes, indicating that it has potential use in the treatment of ALD and related disorders.
This study shows the superiority of cysteine vs NAC for supplementing.
Comparison of N-acetyl-L-cysteine and L-cysteine in respect to their transmembrane fluxes - Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology
The objective of the present study was to compare cysteine and N-acetyl-L-cysteine in respect to their transmembrane fluxes and find out which one is a better available precursor for the cells and thus better supports the intracellular glutathione synthesis. Cysteine can directly participate in...

The objective of the present study was to compare cysteine and N-acetyl-L-cysteine in respect to their transmembrane fluxes and find out which one is a better available precursor for the cells and thus better supports the intracellular glutathione synthesis.
Cysteine can directly participate in glutathione synthesis, whereas N-acetyl-L-cysteine must be first deacetylated before its incorporation to glutathione.
In the present study we investigated and compared the efficiencies of cysteine and N-acetyl-L-cysteine influx and efflux through the erythrocyte membrane. Erythrocytes transported both cysteine and N-acetyl-L-cysteine in a concentration-dependent manner. However, our results demonstrated that cysteine crosses the erythrocyte membranes more efficiently as compared to N-acetyl-L-cysteine.