Functional Complexity Of Hair Follicle Stem Cell Niche And Therapeutic Targeting Of Niche Dysfunctio

Joxy

Experienced Member
Reaction score
519
Abstract


Stem cell activity is subject to non-cell-autonomous regulation from the local microenvironment, or niche. In adaption to varying physiological conditions and the ever-changing external environment, the stem cell niche has evolved with multifunctionality that enables stem cells to detect these changes and to communicate with remote cells/tissues to tailor their activity for organismal needs. The cyclic growth of hair follicles is powered by hair follicle stem cells (HFSCs). Using HFSCs as a model, we categorize niche cells into 3 functional modules, including signaling, sensing and message-relaying. Signaling modules, such as dermal papilla cells, immune cells and adipocytes, regulate HFSC activity through short-range cell-cell contact or paracrine effects. Macrophages capacitate the HFSC niche to sense tissue injury and mechanical cues and adipocytes seem to modulate HFSC activity in response to systemic nutritional states. Sympathetic nerves implement the message-relaying function by transmitting external light signals through an ipRGC-SCN-sympathetic circuit to facilitate hair regeneration. Hair growth can be disrupted by niche pathology, e.g. dysfunction of dermal papilla cells in androgenetic alopecia and influx of auto-reacting T cells in alopecia areata and lichen planopilaris. Understanding the functions and pathological changes of the HFSC niche can provide new insight for the treatment of hair loss.

Background
Hair forms a barrier to protect skin from external insults as well as to keep the body from temperature loss. Human hair, especially human scalp hair, also has important ornamental functions that are essential for social communication and senses of well-being. Unwanted hair loss can pose psychosocial distress to affected individuals [1]. Hair regeneration depends on the activation of hair follicle stem cells (HFSCs) [2,3,4]. As the hair follicle (HF) is an integral part of skin [5], its growth and the activity of HFSCs are regulated by various nearby cells of the HFSC niche in the skin [6, 7]. We categorize the component cells of the HFSC niche into 3 groups according to their functions, including signaling, sensing and message-relaying. We review how HFSC activity is regulated by different signaling cells and how sensing and message-relaying cells help HFs to initiate a regenerative attempt in face of local injury and external environmental changes. In diseased states, we discuss how the pathological changes of the niche lead to dysregulated hair growth. In addition, we discuss how the influx or emergence of non-preexisting cells within the HFSC niche affects hair growth and depletes HFSCs. We also highlight the therapeutic implications of niche pathology with an aim to prevent hair loss and to promote hair growth.


Full paper: https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-020-0624-8
 
Top