Given the amount of wear and tear it’s subjected to on a daily basis, the skin has a phenomenal ability to replenish itself. Spread throughout it are small reservoirs of stem cells, nested within supportive microenvironments called niches, which keep a tight rein on this repair process. Too much tissue might cause problems like cancer, while too little might accelerate aging.
Until now, scientists were uncertain whether the stem cells themselves could instruct other stem cells to form new skin by reshaping their niche. But new research in Science, led by Elaine Fuchs, the Rebecca C. Lancefield Professor, indicates that stem cells can indeed influence tissue regeneration. The study identifies a molecular coordination tool used by stem cells to signal across niches.
https://www.rockefeller.edu/news/26776-lymphatic-system-found-play-key-role-hair-regeneration/
Until now, scientists were uncertain whether the stem cells themselves could instruct other stem cells to form new skin by reshaping their niche. But new research in Science, led by Elaine Fuchs, the Rebecca C. Lancefield Professor, indicates that stem cells can indeed influence tissue regeneration. The study identifies a molecular coordination tool used by stem cells to signal across niches.
https://www.rockefeller.edu/news/26776-lymphatic-system-found-play-key-role-hair-regeneration/