Little was known about the genetics of the disease at that time other than a slight increased risk with a family history of autoimmune disorders. For Christiano, whose hair has since regrown, the way forward was clear — a genome-wide association study (GWAS) to let the genetics of the disease highlight potential mechanisms to target with treatment. “We had to read the genetic tea leaves and let them direct the research,” she says.
By 1999, Christiano and colleagues, with help from the US National Alopecia Areata Foundation (NAAF), had banded together five major clinical research centres and began to interview and phenotype several thousand patients. Their findings, published in 2010, identified eight regions with significant and specific associations with alopecia areata
[2].
“It opened up an important collaboration for us,” says Christiano, who took the results to an immunologist colleague at Columbia, Raphael Clynes. “We’re just simple geneticists but he looked at the pathways indicated by the GWAS — IL [interleukin]-2, IL-15, IFN [interferon]-y — and said ‘this is just diabetes of the hair follicle’.”
It was an important shift in Christiano’s understanding of what alopecia areata is. “For years, people assumed alopecia was a relative of psoriasis. Most trials just tested existing psoriasis drugs and we wondered why they didn’t work. We never thought about diabetes or coeliac or rheumatoid arthritis but that’s the group of autoimmune diseases we clearly align with.”
In all of these autoimmune diseases a specific autoantigen, or danger signal, is expressed to call in the damaging immune response. “HLA [the human leukocyte antigen system gene complex] was our top hit,” says Christiano of her GWAS findings, “but these are the nuts and bolts of the immune response so we expect them to be upregulated in all autoimmune disorders. What gets geneticists excited are the ones that are unique to a disorder.”
The second biggest hit was for
ULBP, a gene unique to alopecia and one, it turned out, that codes for a danger signal expressed by hair follicles in alopecia.
Targeted treatment
When the ULBP-encoded surface protein binds to a killer receptor on the T cell it engages an intracellular cascade that destroys the hair follicle dermal sheath cells and forces hair growth out of its cycle. Several of these intracellular pathways go through tyrosine kinases called janus kinases (JAKs), particularly JAKs 1–3. By inhibiting JAKs 1 and 2, as Christiano and colleagues did with the myelofibrosis drug ruxolitinib, you negate the effect of the danger signal and stop the disease in its tracks.
They’ve tested another JAK inhibitor called tofacitinib, too, which is FDA-approved in the United States for the treatment of rheumatoid arthritis. But as with ruxolitinib, the at-first promising results taper off once the drug is stopped.