No, that mouse study refutes nothing. In order for TGF-beta to work it requires the immune system to induce parafollicular fibrosis. They work synergistically. Something your mouse model does not demonstrate and in fact does not even consider.
You don't read.
Are you even trying to comprehend this?
DHT binding to androgen receptor - I'm not going to site this, because it doesn't get any more obvious.
Androgen-receptor DNA binding of TGF-beta gene in vitro and subsequent gene expression -
Androgen-inducible TGF-beta1 from balding dermal papilla cells inhibits epithelial cell growth: a clue to understand paradoxical effects of androgen on human hair growth.Inui S, Fukuzato Y, Nakajima T, Yoshikawa K, Itami S.
Department of Dermatology, Course of Molecular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
We attempted establishing an in vitro coculture system by using human dermal papilla cells (DPCs) from androgenetic alopecia (Androgenetic Alopecia) and keratinocytes (KCs) to explore the role of androgens in hair growth regulation. Androgen showed no significant effect on the growth of KCs when they were cocultured with DPCs from Androgenetic Alopecia. Because the expressions of mRNA of androgen receptor (AR) decreased during subcultivation of DPCs in vitro, we transiently transfected the AR expression vector into the DPCs and cocultured them with KCs. In this modified coculture, androgen significantly suppressed the growth of KCs by approximately 50%, indicating that overexpression of AR can restore the responsiveness of the DPCs to androgen in vivo. We found that androgen stimulated the expression of TGF-beta1 mRNA in the cocultured DPCs. ELISA assays demonstrated that androgen treatment increased the secretion of both total and active TGF-beta1 in the conditioned medium. Moreover, the neutralizing anti-TGF-beta1 antibody reversed the androgen-elicited growth inhibition of KCs in a dose-dependent manner. These findings suggest that androgen-inducible TGF-beta1 derived from DPCs of Androgenetic Alopecia is involved in epithelial cell growth suppression in our coculture system, providing the clue to understand the paradoxical effects of androgens for human hair growth.
Role of TGF-beta2 in the human hair cycle.Hibino T, Nishiyama T.
Shiseido Life Science Research Center, 2-12-1 Fukuura, Kanazawa-ku, Yokohama 236-8643, Japan.
toshihiko.hibino@to.shiseido.co.jp
Male pattern baldness is the result of premature entry into catagen due to androgens. In order to prevent hair loss, it is important to understand two critical steps, i.e., the induction mechanism of premature entry and the regression process of catagen. At the initiation, dihydrotestosterone (DHT) stimulates synthesis of transforming growth factor-beta2 (TGF-beta2) in dermal papilla cells. TGF-beta2 suppresses proliferation of epithelial cells and stimulates synthesis of certain caspases. Then TGF-beta2 triggers the intrinsic caspase network and subsequently epithelial cells are eliminated through apoptotic cell death. TGF-beta antagonists are effective in preventing catagen-like morphological changes and in promoting elongation of hair follicles in vivo and in vitro. These lines of evidence strongly suggest the presence of a "catagen cascade" in male pattern baldness, involving: (1) the conversion of testosterone to DHT by type II 5-alpha-reductase; (2) the synthesis of TGF-beta2 in dermal papilla cells; and (3) the activation of the intrinsic caspase network. These sequential events contribute to the shortening of the human hair cycle. Copyright 2004 Japanese Society for Investigative Dermatology
TGF-beta's link to fibrosis. Other articles demonstrate clear histological evidence in the hair follicle. Here's an example of the pathway in the kidney, which is exactly the same in the hair follicle-
Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway.Wolf G.
1Klinik fur Innere Medizin III, Klinikum der Friedrich-Schiller-Universitat, Jena, Germany.
Glomerulosclerosis, interstitial fibrosis, and tubular atrophy occur with end-stage kidney failure, irrespective of the primary etiology. The transforming growth factor-beta (TGF-beta) is a key factor in these alterations either directly, by stimulating synthesis of extracellular matrix components and reducing collagenase production, or indirectly through other profibrogenic factors such as connective tissue growth factor (CTGF). TGF-beta is important for the proliferation of intrarenal fibroblasts and the epithelial-mesenchymal transition through which tubular cells become fibroblasts. Although several factors induce TGF-beta expression in the kidney, one very interesting aspect is the link between the renin-angiotensin-aldosterone (Aldo) system (RAAS) and TGF-beta. Angiotensin II (ANG II) stimulates TGF-beta expression in the kidney by various mechanisms and upregulates receptors for TGF-beta. ANG II can directly phosphorylate Smads without inducing TGF-beta. Recent data provide compelling evidence that other components of the RAAS including ANG III, renin, and Aldo also activate the TGF-beta system. As direct modulation of the TGF-beta system is not yet feasible in humans, angiotensin-converting enzyme (ACE) inhibitors and angiotensin type 1 (AT(1))-receptor blockers are currently the most potential drugs to interfere with this ANG II-mediated TGF-beta expression. This review highlights some current aspects of the interaction between the RAAS and the TGF-beta axis.Kidney International advance online publication, 20 September 2006; doi:10.1038/sj.ki.5001846.
Propecia's effects on parafollicular fibrosis via TGF-beta pathway inhibition -
Perifollicular fibrosis: pathogenetic role in androgenetic alopecia.Yoo HG, Kim JS, Lee SR, Pyo HK, Moon HI, Lee JH, Kwon OS, Chung JH, Kim KH, Eun HC, Cho KH.
Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, and Institute of Dermatological Science, Seoul National University.
Androgenetic alopecia (Androgenetic Alopecia) is a dihydrotestosterone (DHT)-mediated process, characterized by continuous miniaturization of androgen reactive hair follicles and accompanied by perifollicular fibrosis of follicular units in histological examination. Testosterone (T: 10(-9)-10(-7) M) treatment increased the expression of type I procollagen at mRNA and protein level. Pretreatment of finasteride (10(-8) M) inhibited the T-induced type I procollagen expression at mRNA (40.2%) and protein levels (24.9%). T treatment increased the expression of transforming growth factor-beta 1 (TGF-beta1) at protein levels by 81.9% in the human scalp dermal fibroblasts (DFs). Pretreatment of finasteride decreased the expression of TGF-beta1 protein induced by an average of T (30.4%). The type I procollagen expression after pretreatment of neutralizing TGF-beta1 antibody (10 mug/ml) was inhibited by an average of 54.3%. Our findings suggest that T-induced TGF-beta1 and type I procollagen expression may contribute to the development of perifollicular fibrosis in the Androgenetic Alopecia, and the inhibitory effects on T-induced procollagen and TGF-beta1 expression may explain another possible mechanism how finasteride works in Androgenetic Alopecia.
You should realize by now that in vitro studies are the basis for the creation of all drugs. In vivo side effects and effects are only obstained by histological evidence and preservation of live tissues with follow up DNA, RNA, and protein testing. Scientists know that increased TGF-beta in any tissue leads to fibrosis histologically. Kidneys, lungs, etc.
Now, why don't you post some studies that prove all of my studies wrong.