Even though this portion of an article is outdated(2010) I believe it is an overall decent snapshot of the scientific research regulatory climate and progressive thinking of the scientific community in present day China. I hope you find it helpful.
Guidelines governing Chinese research are liberal but common to other countries as well. Chinese regulations prohibit reproductive cloning, the use of human embryos past 14 days post-fertilization, the fusion of human and non-human gametes (cells that fuse during fertilization), or the implantation of research embryos into human or animal uterus. Researchers are required to obtain informed consent from subjects and institutes must have an ethics review board to approve research involving human embryonic stem cells. Chinese fertility clinics serve as a source of discarded embryonic stem cells for some research, and cord blood banks may serve as a source of stem cells for clinical applications. Therapeutic cloning is allowed, as is the use of surplus embryos or discarded fetal cells from abortions as well as embryos created with artificial help.
"What sets China apart from most of the rest of the world is that these regulations do not prohibit the fusion of human genetic material with nonhuman oocytes (cells from which an egg or ovum develops)," the MRC authors say.
As well, the rules for embryonic stem cell research in China are criticized internationally as having limited authority over researchers because they are not legally binding. Adherence is enforced only for those who receive government funding, which applies to most researchers, but financially independent researchers or hospitals must simply answer to their own institution's ethical review board.
MRC authors say that while there is no indication embryonic stem cell research rules are being broken, greater regulatory oversight would help ease international concerns.
Interviewees agreed that regulation enforcement is a key concern. According to one, a lack of inspection capacity cast doubt on regulatory implementation.
Huge Chinese investment in RM
Chinese data show the country now generates 400,000 graduates in science and medicine each year and recruits many high caliber scientists from abroad.
China’s gross domestic expenditure on R&D in science and technology has grown from USD5.9 billion in 1996 to USD44 billion today. Stem cell research, tissue engineering and gene therapy are key areas receiving priority funding, largely centralized in the universities, hospitals and research institutes of China's main urban centers, especially Beijing and Shanghai.
Approximately 78% of China's R&D funding in RM is reserved for product development, with an additional 16.8% for applied research. And China has developed large primate colonies for preclinical testing, and begun clinical trials for a number of therapies. According to the MRC, China's push for clinical applications, which has allowed it to produce new scientific knowledge quickly, has come at the expense of basic research aimed at, for example, overcoming technical challenges such as controlling how stem cells behave and differentiate.
Only 5.2% of China's budget for research and development is allocated to basic research, compared with 13 to 19% in Japan, Korea and the USA. Even the funds allocated for basic research favor 'strategic basic research' designed to encourage application.
China's recruitment policy a model for other developing countries
"China has catapulted itself into the field of regenerative medicine in a relatively short time," says Dr. Thorsteinsdóttir. "The government's policy of attracting highly educated Chinese nationals back to China has contributed significantly to the country's success in the field."
"I was amazed that almost all the top Chinese researchers the regenerative medicine field had been educated in the US and the UK and gained extensive working experience there in cutting edge research," she adds. "This is a policy other countries lacking relevant human resources should consider."
"New regulations may in time help restore international confidence in Chinese stem cell innovations, but it will take time to evaluate their impact," says Dr. Daar. "The creation of new RM therapies needs a clear regulatory path. There should also be a closer connection between applied research and those providing therapy."
"China is an important player in regenerative medicine," says Ms. McMahon, "Despite the media's focus on stem cell tourism, the international community needs to recognize that Chinese researchers are making important contributions to the science of this field, and China should be included in international discourses on standards and regulations."
"Regenerative medicine research in China is a source of national pride," she adds. "The Chinese rightly feel their research discoveries can achieve solutions to many global health problems. If China continues to build on its strengths and overcomes its challenges, successful, internationally acclaimed regenerative medicine treatments and therapies are more than likely."
The
McLaughlin-Rotman Centre for Global Health, is based at the University Health Network and the University of Toronto. Working at the nexus of science, entrepreneurship, and the developing world, the Centre conducts translational research on malaria, on ethics and on commercialization in global health to help researchers and companies get life sciences technologies (such as diagnostics, drugs, and vaccines) to those who need them in developing countries.